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Nomenclature
c = resultant mean velocity
c + = nondimensional resultant velocity,

= C/UT
F = law of the wall function, Eq. (6),
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Subscripts
C

i
x,z
d

•• Reynolds number based on boundary-
layer thickness, = U^d/v

• main-flow component of mean velocity
in x direction

: friction velocity, = VTV//O
= freestream velocity at the edge of the

boundary layer
= scaling velocities of the wake function,

Eqs. (7) and (12)
= differences of the scaling velocities of the

wake function, Eqs. (7) and (12)
= nondimensional velocity component in x

direction, = U/UTX
• crossflow component of mean velocity in

z direction
= nondimensional velocity component in z

direction, = W/UTZ
- nondimensional, characteristic quantity,

= RedwK = y + K\ §
= local coordinate aligned with the free

streamline
= local coordinate normal to the wall
= nondimensional wall distance, = yuT/v
- local coordinate normal to the free

streamline
= angle of the free streamline
= cross flow angle
= angle of the wall shear stress
= boundary-layer thickness
= nondimensional wall distance, =y/d
-- von Karman constant, =0.41
= kinematic viscosity
= fluid density
= wall shear stress
= wake function, Eq. (9)
= model function, Eq. (10)
= nondimensional friction velocity, = UT/

= velocity component without the auxiliary
distribution

= inner region, law of the wall
= in the respective coordinate direction
= at the edge of the boundary layer
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I. Introduction

EXPERIMENTAL investigations of three-dimensional tur-
bulent boundary-layer velocity profiles on infinite swept

wings have shown that there is a good agreement of the
main-flow component with the Coles model.2 The streamlines
are congruent along the infinite swept wing. If a suitable
coordinate system is chosen, there exists a coordinate direction
where the flowfield does not change, and the boundary-layer
equations can be considerably simplified. The measurements
of van den Berg and Elsenaar1 are typical for this. In other
cases the velocity profiles show deviations from Coles' profile
model. Such experiments are, for instance, those of Dechow3

and Muller.5 In those cases the streamlines cannot be brought
to coincidence by shifting them. The development along adja-
cent streamlines is different.

In order to make the different development of the velocity
profiles clear, the mentioned measurements are evaluated by
means of a velocity profile model. The evaluation indicates
that the deviations of the main-flow component are definitely
correlated with the deviations of the crossflow component
from a basic distribution. All three data sets have in common
that the three-dimensional boundary layer develops from a
two-dimensional entrance flow and that the outer streamlines
have no turning point. So called crossover profiles are not
included. Only profiles upstream of separation are investi-
gated.

II. Law of the Wall
Due to the small extent of the laminar sublayer, the cross-

flow angle 0 = w/u differs only slightly from 0W. Therefore,
to start with, it is allowed to assume that for this region

t = Cj cos/3w, w/ = Ci sin/3w

and furthermore

UTX = UT SH,, UTZ = UT Vsin/3w

(D

(2)

In a similar way, K - 0.41 can be split up into two compo-
nents:

It follows that

X = ReduK

(3)

(4a)

(4b)

(5)
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Fig. 1 Representation of the main-flow and crossflow components
according to Eqs. (13) and (14) in comparison with measurements of
Dechow3 profile 7.
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In order to describe the velocity distribution both in the
viscous sublayer and in the region of transition toward the
logarithmic law, a modified form of the law of the wall
function of Pfeil and Sticksel6 [also Pfeil and Miiller7 (see Fig.
1)] is assumed for the velocities c/ + , uf

 + , and w/ + :

, rj) = F

0.5816^

+ 3.4836

_ e 0.3339^ + K)] - (6)

The corrective term l/2it2 in Eq. (6) causes the derivative of the
law of the wall function at the edge of the boundary layer to
become zero.

III. Complete Velocity Profile Model
An evaluation of the measurements of van den Berg and

Elsenaar1 has shown that the main-flow component can be
described by the Coles profile model,2 whereas an auxiliary
term is needed to describe the measurements of Dechow3 and
Miiller.5 The measurements of van den Berg and Elsenaar lead
to a basic distribution of the crossflow component, but for the
measurements of Dechow and Miiller an auxiliary distribution
is also required. The auxiliary distributions of the main-flow
and cross-flow components are closely correlated. Both terms
without the respective auxiliary distribution are labeled with
the subscript C.

These considerations are laid down in the following formu-
las for the components of the complete velocity profile model:

Main-flow component:

—— A I V A ^c7oo KX cVoo

with
o
f

Crossflow component:

(7)
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(U)

(12)

When Eq. (7) is multiplied by KX/WX and Eq. (8) by K2/wz, both
components can be presented with a common law of the wall.
That leads to the following relations:

Main-flow component :

(I-*,) +

0.0 0.2 UA u.o u.o -n

Fig. 2 Model functions $1 and $2 in comparison with experimental
results.

Cross-flow component:

w -*• K7 = F - — -

(13)

Both components of the profile model are shown together in
Fig. 1 using this formulation.

IV. Comparison with Experimental Results
It is advantageous to evaluate each velocity profile of the

measurement series investigated by means of the profile model
according to Eqs. (13) and (14), because in a common repre-
sentation such as in Fig. 1 both components have the same law
of the wall. The resulting boundary-layer parameters 6, w, /3W,
a, and U^ are in a few cases slightly different from the data
given by the authors. The parameter ^u\m/U^ and, therefore,
according to Eq. (12), also Awm/(/oo is determined to obtain
good agreement with the measured velocity profiles.

For further verification of the proposed model, Eqs. (7) and
(8) are solved with respect to $2 using the measured distribu-
tions of the main-flow and crossflow components and $1,
according to Eq. (9). Likewise, one can solve the same equa-
tions with respect to $1 using $>2» according to Eq. (10). The
results are shown in Fig. 2.

In Figs. 3 and 4, the measured distributions of the main-
flow and crossflow components are shown in comparison with
the model. Also shown are the distributions which result if one
attempts to describe the main-flow component by the Coles
profile model. This demonstrates that the crossflow compo-
nent and its deviations are uniquely correlated with the main-
flow component and its deviations by Eqs. (7), (8), (11), and
(12). Independently of whether or not a bu\m/U<» occurs, Eqs.
(11) and (12) confirm the observation reported by Johnston4

that in the outer region of the boundary layer there is

(15)

This can easily be confirmed by comparing Eqs. (7) and (8).
The velocity profiles measured by van den Berg and Elsenaar1

on an infinite swept-wing model show no deviations from the
Coles profile model, Awlm/C/oo = 0, whereas the measurements
of Dechow3 and Miiller5 show deviations of the main-flow
component that increase when /3W increases.

Many ways have been tried to find a dependence of Awlw/
£/<» on other boundary-layer parameters. It appears that there
exist some useful correlations between the measurements of
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Fig. 3 Model for the main-flow component in comparison with ex-
perimental results.
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Fig. 5 Correlation between 0W, a, uim/U^ and AMim/t/oo for the
measurement series of van den Berg and Elsenaar1 and Dechow.3

Refs. 1 and 3. For example, the following empirical correla-
tion can be determined from both experiments (Fig. 5):

- 2.4 sin a) = 2.4 sin "lir (16)

0.0 0.2 Q.I. 0.6 0.8

Fig. 4 Model for the crossflow component in comparison with ex-
perimental results.

where Au^/U^ = 0 is valid for the measurements of van den
Berg and Elsenaar, as shown in Figs. 3 and 4.

Concerning the determination of Au^/U^, the measure-
ments of Miiller5 do not fit into any of these correlations.
Evaluation of other is measurements needed to show if it is
possible to correlate Au^/U^ with boundary-layer parame-
ters like Eq. (16). It may be necessary to include the gradients
of these parameters or knowledge of the outer flowfield. It
needs to be mentioned that there was a 5-mm trip wire at the
beginning of Miiller V flow and that the measurements were
taken at random points in a flowfield, in contrast to the other
two sets of measurements which were taken along streamlines.

V. Conclusions
Analysis of three-dimensional turbulent boundary-layer

data shows that even for small crossflow, i.e., for small angles
j8w, the velocity profiles of the main-flow and crossflow com-
ponents deviate distinctly from simple descriptive profile mod-
els when the streamlines are not congruent. These deviations
can be well described by additional correlated distributions.
Regarding the measurements of van den Berg and Elsenaar1

and Dechow,3 the coefficient Au^/U^ which appears in the
additional distributions, is determined, for example, by Eq.
(16) (see Fig. 5). The measurements of Miiller5 do not fit into
this. Only evaluation of other measurements can show if the
relation in Fig. 5 is universal.
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Comparison of Iterative and
Direct Solution Methods for

Viscous Flow Problems

C. P. van Dam,* and M. Hafezt
University of California, Davis, Davis, California

Introduction

THE purpose of this study is to compare quantitatively
several numerical solution techniques for solving two-

dimensional viscous flow problems, including separated flows,
at moderate to high Reynolds numbers. These solution tech-
niques have various degrees of implicitness, and they are com-
pared on the basis of convergence, CPU time, storage require-
ments, and solution accuracy. The stream-function (\l/) vorticity
(co) approach is used to formulate the partially parabolized
Navier-Stokes (PPNS) equations that describe the two-dimen-
sional incompressible flow. The PPNS equations are quite
similar to the Navier-Stokes (NS) equations; streamwise diffu-
sion is the only physical process neglected, and terms repre-
senting this diffusion are dropped from the NS equations. The
governing equations are

(VU>)y = (D

(2)

where the term otut represents an artificial time-dependent
term, and the velocity u = \l/y and v - — \l/x. At the solid wall,
the no-slip boundary condition requires u = 0 and v = 0. For
external flows co = 0 and u = U(x) at the upper boundary. For
internal flows the boundary conditions at the centerline of,
e.g., a channel, are co = 0 and \l/ = \l/(xQ9yc). At the inflow
boundary \l/ and co are prescribed, whereas at the outflow
boundary the PPNS equations are reduced to the boundary-
layer equations by neglecting the i/^ term.

Received Aug. 10, 1987; revision received Nov. 4, 1988. Copyright
© 1989 American Institute of Aeronautics and Astronautics, Inc. All
rights reserved.

*Assistant Professor, Division of Aeronautical Science and Engi-
neering, Department of Mechanical Engineering. Member AIAA.

tProfessor, Division of Aeronautical Science and Engineering, De-
partment of Mechanical Engineering. Associate Fellow AIAA.

Solution Techniques
Method I

The first solution technique employs a simple space march-
ing procedure for the coupled stream-function and vorticity
equations. Several authors have developed similar iterative
methods to solve the NS equations or reduced equations.1"5

The vorticity equation is linearized by lagging its coefficients.
The resulting equation plus the stream- function equation are
solved simultaneously for co and \l/ by using a line-relaxation
procedure. Multiple global sweeps are required to obtain con-
vergence. Centered differencing is applied for all terms except
for the convective term (wco)*. The problem of loss of diagonal
dominance forces the use of an upwind differencing scheme
for this term. Previously, the authors used a conservative
first-order upwing differencing scheme for the convective term
in the streamwise direction.6 However, this scheme required
excessively fine meshes to obtain grid-independent solutions.
In this study the following second-order upwind differencing
scheme is applied:

, ) = Uj-2J<*i-2J

if w / + i / 2 J > 0

, } = -
v

and

2A*

if ui+Y2j<Q and «/-i/2i /<0

if uf + ./2 j ; > 0 and w/ _ /2 j < 0

(3a)

(3b)

(3c)

if ui+nj<Q and w / _ i / 2 J > 0 (3d)

It can be shown that this scheme is conservative and that it is
no more dissipative than a central differencing scheme. The
resulting algebraic expressions have the following form:

(4)

(5)

At each x location (i = const), the coefficients form a five-
diagonal matrix. The solid wall and far-field boundary con-
ditions are implemented as follows:

^/,i = 0 (6)

(7)

(8)

2(Ajc)2

U(x)
Ay (9)

where M and N represent the number of grid points in the
streamwise and normal direction, respectively. The system of
equations is solved with a scalar pentadiagonal matrix solver.
The convergence of this solution technique can be accelerated
by the introduction of a relaxation parameter j3 for the stream-
function equation.4


